Never look back unless you are planning to go that way
Physicist: Alright, the Earth has only one mechanism for releasing heat to space, and that’s via (infrared) radiation. We understand the phenomenon perfectly well, and can predict the surface temperature of the planet as a function of how much energy the human race produces. The upshot is that at a 2.3% growth rate (conveniently chosen to represent a 10× increase every century), we would reach boiling temperature in about 400 years. And this statement is independent of technology. Even if we don’t have a name for the energy source yet, as long as it obeys thermodynamics, we cook ourselves with perpetual energy increase. (…)
Economist: Consider virtualization. Imagine that in the future, we could all own virtual mansions and have our every need satisfied: all by stimulative neurological trickery. We would stil need nutrition, but the energy required to experience a high-energy lifestyle would be relatively minor. This is an example of enabling technology that obviates the need to engage in energy-intensive activities. Want to spend the weekend in Paris? You can do it without getting out of your chair.
Physicist: I see. But this is still a finite expenditure of energy per person. Not only does it take energy to feed the person (today at a rate of 10 kilocalories of energy input per kilocalorie eaten, no less), but the virtual environment probably also requires a supercomputer—by today’s standards—for every virtual voyager. The supercomputer at UCSD consumes something like 5 MW of power. Granted, we can expect improvement on this end, but today’s supercomputer eats 50,000 times as much as a person does, so there is a big gulf to cross.